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ABSTRACT 
 

Generating the entire permutation sample space has been identified as a major problem in constructing the exact test of 
significance of a rank statistic. Procedures for most of the existing methods for finding the exact distribution for the 
common test statistics that are in use today are usually based on asymptotics which only give approximate results. The 
definition of what constitute a large sample in order to apply the large sample approximation is quite vague. In this 
paper, a method for obtaining the exact distribution of the Kruskal-Wallis (K-W) test is presented. The proposed method 
is based on combinatorics in the representation of the probability generating function of the test statistic. Essentially, this 
paper produces the exact critical values of the K-W test and the minimum sample size required for the application of the 
large sample approximation of the K-W statistic. 
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INTRODUCTION 
 
Exact Statistical method of data analysis is a valuable tool 
of applied statistics as it ensures that the probability of 
making a type I error is exactly , thus controlling the 
risk in decision making. The idea of obtaining an exact 
test of significance through the permutation approach 
originated with Fisher (1935). Fisher compiled by hand 
32,768 permutations of Charles Darwin’s data on the 
height of cross-fertilized and self-fertilized zeamays 
plants. The enormity of this task possibly discouraged 
Fisher from probing further into exact permutation tests 
(Ludbrook and Dudley, 1998). In the quest for finding the 
exact distribution of several statistics and making correct 
inferences, a lot of problems abound. These problems are 
well highlighted in Fisher (1935), Agresti (1992), Mitic 
(1996), Baglivo et al. (1996), Bergmann et al. (2000), 
Good (2000), Odiase and Ogbonmwan (2005a,b) and 
Ogbonmwan et al. (2007).  
 
Scheffe (1943) showed that the permutation approach is 
the only possible technique of constructing exact tests of 
significance for a general class of problems. Hoeffding 
(1952) remarked that this permutation test is 
asymptotically as powerful as the best parametric test. 
The unconditional permutation approach is a statistical 
procedure that ensures that the probability of a type I error 
is exactly   and ensures that the resulting distribution of 
the test statistic is exact, Agresti (1992), Good (2000), 
Pesarin (2001), Odiase and Ogbonmwan (2005, 2007). 

The unconditional exact permutation approach in which 
row and column totals are allowed to vary with each 
permutation is very much unlike the conditional exact 
permutation approach of fixing the row and column totals, 
Headrick (2003), Bagui and Bagui (2004) and Odiase and 
Ogbonmwan (2005b). Exact tests constructed by 
restricting attention to a conditional reference set of 
contingency tables with margins fixed at the values 
actually observed is not always true in nature.  
 
There are several Monte Carlo methods that can be used 
in generating exact p-values. The most widely used is the 
bootstrap re-sampling technique developed by Efron 
(1979). The Bayesian and the Likelihood approaches can 
be found in Bayarri and Berger (2004) and Spiegelhalter 
(2004). All these alternative approaches to the 
unconditional permutation approach only give 
approximate results. Exact procedures are the best and 
should always be applied whenever practically possible, 
Lehmann (1986) and Good (2000). Permutation tests 
provide exact results especially when complete 
enumeration is possible (Pesarin, 2001).  
 
A complete enumeration of the permutation sample space 
for the purpose of constructing an exact test of 
significance is only possible when sample sizes are small 
(Odiase and Ogbonmwan, 2005a,b). A big challenge in 
using nonparametric test is the availability of 
computational formulas and tables of exact critical values. 
This continues to be a problem as evidenced by a survey 
of 20 in-print general college statistics texts, see Fahoome 
(2002).  
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Many nonparametric tests have large sample 
approximations that can be used as an alternative to 
tabulated exact critical values. These approximations are 
useful substitutes if the sample size is sufficiently large 
and hence obviate the need for locating tables of exact 
critical values. But, the definition of what constitutes a 
large sample size for most statistics is quite vague in the 
literature (Bergmann et al., 2000;  Fahoome, 2002). This 
paper produces the exact critical values of the K-W 
statistic. The consideration given here overcomes the 
major problem of carrying out a complete enumeration in 
order to construct an exact test of significance. The exact 
distribution of the K-W statistic is obtained in a 
combinatorial sense via its probability generating function 
using the computer algebra Mathematica 6.0. When 
sample sizes are large, the exact distribution of the K-W 
statistic can be approximated by the chi square 
distribution. We study the convergence of the chi square 
approximation to the exact distribution of the K-W 
statistic and provide the minimum sample size required 
for the application of this asymptotic distribution. 
 
Exact distribution of the Kruskal-Wallis test 
 
Kruskal and Wallis (1952) rank based test of location 
equality for 3k  may be among the most useful of 
available hypothesis testing procedures. The K-W statistic 
can be seen as a generalization of the Wilcoxon rank sum 
test. Consider k  independent samples ,,...,

1111 nXX  

2221 ,..., nXX , 
kknk XX ,...,..., 1 of sizes knn ,...,1  

drawn from k  continuous (not necessarily normal) 
populations. We wish to test the null hypothesis oH  that 
these populations are identically distributed against the 
alternative 1H  that these populations are not identically 
distributed. 
 
To conduct the test, we calculate the rank sum kRR ,...,1  

of the sXsX k ',...,' ..1  in the combined ordered 

arrangement of these k  samples and the K-W test 
statistic is   
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 and [nlist] is a list of the sample sizes.  

 
 

The null hypothesis oH  is rejected if  1HH  where 

the notation 1H  in Tables 1 through 3 means 

  %1001   percentile of the H statistic which is 
equivalent to   level exact critical value of the H 
statistic. A direct enumeration of all the permutation of 
ranks in a k  sample experiment is required to compute 
the exact distribution of the K-W statistic. However, this 
is only feasible for very small sample sizes. Problem 
arises as the sample size increases. For instance, to 
compute the exact distribution of  K-W statistic for the 
sample sizes 10321  nnn  , we require 
5,550,996,791,340 distinct arrangements of the ranks. To 
overcome this problem of complete enumeration, we state 
a combinatorial problem following the idea of Baglivo et 
al. (1996). We develop generating functions to solve the 
problem formulated. This provides insight into obtaining 
the exact distribution of the K-W statistic. 
 
Combinatorial Problem 
 
We pose the following combinatorial problem: Suppose 
we have n  observations which are ranked 1, 2, 3…, n . In 
how many   different ways is it possible to divide these n  
observations among k  samples such that the thi  sample 

iT  contains in  observations and the sum of the ranks of 

these in  observations in sample iT  is ir  with  
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Let the number be: 
       kk rrrnnnPrlistnlistP ...,,...,:, 2,1,2,1   (2)  
 
We can calculate this number  rlistnlistP ,  by 
counting the relevant partitions.               
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possible permutations of the n  variates of the k  samples 
of sizes kini ,...,2,1,   which are equally likely with 

probability 
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The number  rlistnlistP ,  can easily be obtained for 
small n  and k  by counting the relevant partitions. 
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However, when n  and k  are small, this method of 
obtaining  rlistnlistP ,  fails because of the large 
associated permutation sample spaces. For instance, when 

3,4,7,6 4321  nnnn , there are 
4,655,851,200 distinct arrangements of the ranks. 
Admittedly, it is very difficult to carry out this 
enumeration manually in order to compute 
 rlistnlistP , . 

 
To overcome this major problem of enumeration, we find 
the generating function for the number  rlistnlistP , . 

To achieve this, let  ix  be a variable governing the 

number of observations in the thi  sample and  iy  be a 
variable governing the sum of the ranks of the 
observations in the thi  sample. Then, the generating 
function for the number  rlistnlistP ,  is given as   
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See Ewere and Ogbonmwan (2010a) 
 
Obviously, the numbers  rlistnlistP ,  are the 

coefficients of     


k

i
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1

 of the polynomial 

 knp , . Hence,  rlistnlistP ,  is obtained by selecting 

the coefficients of    


k

i

rn ii iyix
1

. However, this 

method of enumeration is not computationally efficient as 
one would expect due to the fact that the number of terms 
of the generating function in (3) are of order nk  which is 
not too small even if n and k are not very large.  
 
To improve on the computational efficiency of (3), we let 

 .,...,, 21 knnnnlist   This gives rise to a new 

generating function  nlistp  for the number 

 rlistnlistP ,  which  have number of terms whose 

order is only  knnnlMultinomia ,...,, 21  which is 

smaller than nk . Clearly, this generating function 

 nlistp  gives the coefficients of  
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of the 

generating function  knp , . To speed up computations, 

the generating function ][nlistp  is defined recursively 
as: 
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See Ewere and Ogbonmwan (2010b).         
 
To compute the exact null distribution of the K-W 
statistic, It is instructive to state that:’ 
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The generating function of the K-W statistic is obtained 
by substituting H in (1) to  
 

],...,[
][

1 knnlMultinomia
nlistp

    (7) 

 
From this generating function, all the distributional 
characteristics of the K-W statistic can be obtained. Under 
the null hypothesis, all possible assignments of the ranks 
1,2,…, n  to the k  samples are equally likely with 
probability M 1 . 
 
The large sample approximation 
 
Good (2000) noted that when sample sizes are large, the 
time required to compute a permutation distribution can 
be prohibitive even if we are taking advantage of one of 
the optimal computing algorithm. However, when sample 
sizes are large, asymptotic approximations are often used 
in place of the exact permutation distribution. 
Nevertheless, these asymptotic approximations are to be 
avoided except with very large samples as they can be 
grossly in error, see Micceri (1989), Mudholkar and 
Hutson (1997) and Good (2000). There is no general 
agreement in the literature as to what constitute a large 
sample for several statistics, see Fahoome (2002). 
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Ascertaining the smallest sample size that can be used 
with a large sample approximation for various statistics 
would enable researchers who do not have access to the 
necessary tables of critical values to employ these tests. In 
order to determine the minimum sample size required for 
the application of asymptotic result of the K-W statistic, 
we employed the Bradley’s (1978) conservative estimates 
of 0.045 < Type I error rate < 0.055 and 0.009 < Type I 
error rate < 0.011 as measures of robustness when 
nominal   was set at 0.05 and 0.01 respectively. The 
sample sizes were increased until the Type I error rates 
converged within these acceptable regions. Generally, the 
stringent criterion  1.19.0 0   where 0  is the 
true probability of a type I error when one or more of a 
test’s assumptions are violated and the null hypothesis is 
true seems more appropriate to illustrations of 
‘convergence’ than the liberal criterion given by Cochran 
(1952), who considered actual significance levels less 
than 20% above the nominal level to be acceptable, see 
Sullivan and D’Agostino (1992).  
 
RESULTS AND DISCUSSION 
 
Tables 1, 2 and 3 provide exact critical values for the K-
W statistic. These exact critical values ensures that the 
probability of a type I error in decision making arising 
from the use of the K-W test is exactly  . These critical 
values have been presented for some combination of 
sample sizes as it is impractical to present the entire 
distribution here. But, this can be easily obtained from the 
Mathematica program. For large sample sizes, the 
distribution of the K-W test statistic can be approximated 
by a chi-square distribution. We study the quality and 
usefulness of this approximation both numerically and 
graphically. We reported the exact and asymptotic type I 
error rates for nominal level of significance 
 10.0 and 05.0  when k = 3 and   10.0  for a 4 

sample situation, that is k = 4, see Tables 4, 5 and 6 
respectively.  
 
We were restricted to these significance levels due to 
limitation in computer memory. Using the Bradley’s 
(1978) measure of robustness, we found that a minimum 

of 3 and 9 per sample for k = 3 is adequate to apply the 
chi- Square distribution for  10.0 and  05.0  
respectively. For a 4 sample condition, the minimum size 
per sample is 4 for the application of the Chi-Square 
distribution when  10.0 . These results have been 
asterisked in Tables 4 through 6. Tables 4 through 6 
reveals the convergence of the asymptotic distribution to 
the exact distribution of the K-W statistic as the sample 
size increases. This is evident in the decrease in the 
absolute difference between the exact and asymptotic 
Type I error rates as the sample size increases. Figures 1 
through 4 also shows this convergence situation. 
         
The definition of a large sample in order to apply the 
asymptotic result of the K-W test is quite vague in the 
literature. Kruskal and Wallis (1952) found that for small 
 ( less than about 0.10) and k = 3, the Chi-square 
approximation furnishes a conservative test in many if not 
most situations. Gabriel and Lachenbruch (1969) showed 
that the Chi-square approximation is good even though 
the sample sizes may be small. Conover (1971) concluded 
that the Chi-square approximation should be used when 
the sample sizes exceed 5. He further stated that though 
the Chi-square approximation is justified only for 
reasonably large sample sizes in , in practice the 
approximation is used in all situations not covered by the 
table provided by Kruskal and Wallis (1952). Devore 
(1982) and Rohatgi (1984) stated that the large sample 
approximation is applied if k = 3, in 3)1(1,6  i  or k 

> 3, in ki )1(1,5  .  Fahoome (2002) recommended a 

minimum of 11 and 22 per sample for  05.0  and 
 01.0  for the application of the Chi-square 

approximation. Bagui and Bagui (2004) noted that for 
small samples in , ki )1(1  in a k–sample experiment, 
the null distribution of K-W statistic is not known and a 
Chi-square approximation will not be a good one. These 
recommendations in the literature for the minimum 
sample sizes for the application of the asymptotic result of 
the K-W statistic were based on approximate methods and 
thus not reliable. 

 
 
Table 1. Exact Critical Values of the Kruskal-Wallis test for k = 3 
 

Sample sizes 
9000.0H  9500.0H  9750.0H  9900.0H  9950.0H  9975.0H  9990.0H  

2,  2,  2 3.71429 4.57143     -    -     -    -    - 
3,  2,  2 4.46429 4.5000 5.35714    -     -    -    - 
3,  3,  2 4.55556 5.13889 5.55556 6.2500     -     -    - 
3,  3,  3 4.62222 5.6000 5.95556 6.48889 6.48889 7.2000    - 
4,  2,  2 4.45833 5.1250 5.33333 6.0000     -     -     - 
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4,  3,  2 4.4444 5.4000 5.8000 6.3000 6.4000 7.0000     - 
4,  3,  3 4.70909 5.79091 6.01818 6.74545 7.0000 7.31818 8.01818 
4,  4,  2 4.44545 5.23636 6.08182 6.87273 7.03636 7.85455     - 
4,  4,  3 4.47727 5.57576 6.38636 7.13636 7.47727 7.84848 8.32576 
4,  4,  4 4.5000 5.65385 6.57692 7.53846 7.73077 8.11538 8.76923 
5,  2,  2 4.29333 5.04000 5.69333 6.13333 6.53333      -    - 
5,  3,  2 4.49455 5.10545 5.94909 6.82182 6.94909 7.18182 7.63636 
5,  3,  3 4.41212 5.51515 6.30303 6.98182 7.51515 7.87879 8.24242 
5,  4,  2 4.51818 5.26818 6.04091 7.11818 7.56818 7.81364 8.11364 
5,  4,  3 4.52308 5.63077 6.39487 7.39487 7.90641 8.25641 8.62564 
5,  4,  4 4.61868 5.61758 6.5967 7.74396 8.15604 8.7033 9.12857 
5,  5,  2 4.50769 5.24615 6.23077 7.26923 8.07692 8.29231 8.68462 
5,  5,  3 4.53626 5.62637 6.48791 7.54286 8.26374 8.65934 9.05495 
5,  5,  4 4.5200 5.64286 6.67143 7.79143 8.46286 9.02571 9.50671 
5,  5,  5 4.5000 5.6600 6.7200 7.9800 8.7200 9.3800 9.7800 
6,  2,  2 4.43636 5.01818 5.52727 6.54545 6.65455 6.98182     - 
6,  3,  2 4.54545 5.22727 6.06061 6.72727 7.5000 7.57576 8.18182 
6,  3,  3 4.53846 5.55128 6.38462 7.19231 7.61538 8.32051 8.62821 
6,  4,  2 4.4359 5.26282 6.10897 7.21154 7.82051 8.30769 8.66667 
6,  4,  3 4.5989 5.6044 6.5000 7.46703 8.02747 8.61538 9.15385 
6,  4,  4 4.52381 5.66667 6.59524 7.72381 8.32381 8.88095 9.62857 
6,  5,  2 4.47473 5.31868 6.18901 7.2989 8.18681 8.74725 9.18462 
6,  5,  3 4.49714 5.6000 6.62095 7.5600 8.29714 9.02857 9.61714 
6,  5,  4 4.5000 5.65583 6.73583 7.89583 8.6400 9.29333 9.9600 
6,  5,  5 4.52941 5.69853 6.78088 8.01176 8.83529 9.58088 10.2706 
6,  6,  2 4.41905 5.35238 6.17143 7.40952 8.15238 8.93333 9.67619 
6,  6,  3 4.5250 5.6000 6.68333 7.68333 8.41667 9.2250 10.1250 
6,  6,  4 4.51838 5.72059 6.78309 7.98897 8.72059 9.41176 10.2831 
6,  6,  5 4.54118 5.75163 6.83791 8.11895 8.9817 9.72418 10.5150 
6,  6,  6 4.53801 5.7193 6.87719 8.18713 9.08772 9.87135 10.8421 
7,  7,  7 4.54917 5.76623 6.90909 8.33395 9.35807 10.2486 11.3098 
8,  8,  8 4.5800 5.7950 6.9800 8.4350 9.4850 10.5000 11.6550 
9,  9,  9 4.57496 5.82363 7.02998 8.55379 9.59788 10.6667 11.9189 
10,10,10  4.5600 5.8529 7.07871 8.6271 9.75742 10.7845 12.1110 
11,11,11 4.58143 5.84735 7.11911 8.67088 9.81429 10.9110 12.3034 
12,12,12 4.58258 5.86937 7.11261 8.72222 9.87538 11.0045 12.4339 
13,13,13 4.58107 5.87337 7.13964 8.75621 9.94201 11.0923 12.5550 
14,14,14 4.57997 5.89559 7.15425 8.7907 9.98481 11.1467 12.6246 
15,15,15 4.58512 5.90609 7.17527 8.81391 10.0321 11.2139 12.7173 
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Table 2. Exact Critical Values of the Kruskal-Wallis test for k = 4 
 

Sample sizes 
9000.0H  9500.0H  9750.0H  9900.0H  9950.0H  9975.0H  9990.0H  

2,2,2,2 5.5000 6.0000 6.16667 6.16667    -     -     - 
3,2,2,2 5.64444 6.24444 6.64444 7.0000 7.13333     -     - 
3,3,2,2 5.72727 6.47273 7.0000 7.63636 7.72727 8.0000 8.12727 
3,3,3,2 5.81818 6.68182 7.4697 7.95455 8.31818 8.56061 8.92424 
3,3,3,3 5.97436 6.89744 7.61538 8.4359 8.74359 9.15385 9.46154 
4,2,2,2 5.67273 6.43636 6.98182 7.30909 7.85455 7.96364     - 
4,3,2,2 5.71212 6.61364 7.31818 7.84848 8.2500 8.59091 8.89394 
4,3,3,2 5.85897 6.78205 7.55769 8.32051 8.69872 9.05769 9.40385 
4,3,3,3 6.0000 6.96703 7.75824 8.65385 9.23077 9.57692 10.000 
4,4,3,3 6.00476 7.03333 7.92381 8.86667 9.49048 9.96667 10.4619 
4,4,4,3 6.02917 7.12917 8.05417 9.06667 9.71667 10.3417 10.900 
4,4,4,4 6.06618 7.21324 8.20588 9.26471 9.94853 10.5662 11.3382 
5,2,2,2 5.61818 6.52727 7.15455 7.66364 8.01818 8.38182 8.68182 
5,3,2,2 5.75385 6.65641 7.4641 8.19487 8.62564 8.93333 9.42308 
5,3,3,2 5.85714 6.82198 7.65055 8.59121 9.05714 9.41758 9.8549 
5,3,3,3 5.9981 7.01143 7.82667 8.8400 9.45714 9.90667 10.4095 
5,4,3,3 6.02917 7.08917 7.98917 9.02917 9.69583 10.2892 10.8558 
5,4,4,3 6.03456 7.16691 8.13456 9.21176 9.93971 10.5574 11.2963 
5,4,4,4 6.06078 7.25686 8.27255 9.3902 10.1373 10.8020 11.5882 
5,5,4,4 6.06842 7.28947 8.34211 9.53509 10.3281 11.0228 11.8439 
5,5,5,4 6.07737 7.32632 8.40632 9.66474 10.4858 11.2232 12.0947 
5,5,5,5 6.09714 7.36571 8.47429 9.78857 10.6571 11.4114 12.3143 
6,2,2,2 5.66667 6.51282 7.28205 7.89744 8.38462 8.66667 9.23077 
6,3,2,2 5.76923 6.69231 7.48352 8.35165 8.84615 9.24176 9.72527 
6,3,3,2 5.87619 6.85714 7.69524 8.68571 9.30476 9.7619 10.2190 
6,3,3,3 6.0250 7.03333 7.89167 8.9000 9.6000 10.2250 10.7583 
6,4,3,3 6.02206 7.1250 8.04779 9.1250 9.84926 10.5147 11.2059 
6,4,4,3 6.04902 7.18954 8.18301 9.31373 10.0686 10.7582 11.5523 
6,4,4,4 6.06725 7.26901 8.32164 9.4883 10.2632 10.9883 11.8392 
6,5,4,4 6.07737 7.31421 8.39368 9.61947 10.4437 11.1937 12.0826 
6,5,5,4 6.09048 7.3400 8.4619 9.7519 10.6157 11.3857 12.3048 
6,5,5,5 6.10823 7.37316 8.51861 9.86926 10.7602 11.5636 12.5186 
6,6,5,5 6.0996 7.4000 8.56522 9.94545 10.8743 11.7091 12.7075 
6,6,6,5 6.10942 7.14377 8.60217 10.0152 10.9790 11.8507 12.8942 

 
Table 3. Exact Critical Values of the Kruskal-Wallis test for k = 5 
 

Sample sizes 
9000.0H  9500.0H  9750.0H  9900.0H  9950.0H  9975.0H  9990.0H  

2,2,2,2,2 6.87273 7.30909 7.85455 8.07273 8.4000 8.40000    - 
2,3,2,2,2 6.93939 7.66667 8.16667 8.66667 8.95455 9.0303 9.27273 
2,3,3,2,2 7.01282 7.89744 8.52564 9.10256 9.44872 9.69231 10.000 
2,3,3,3,2 7.0989 8.02198 8.8022 9.49451 9.86813 10.2198 10.6044 
2,3,3,3,3 7.18095 8.17143 9.00952 9.84762 10.3048 10.6857 11.1429 
3,3,3,3,3 7.3000 8.3000 9.2000 10.1667 10.7000 11.1333 11.6330 
4,2,2,2,2 6.98077 7.82692 8.38462 9.05769 9.36538 9.59615 9.92308 
4,3,2,2,2 7.04396 7.97802 8.7033 9.41758 9.85714 10.2033 10.5385 
4,3,3,2,2 7.1381 8.12381 8.9381 9.78095 10.2619 10.6762 11.1000 
4,3,3,3,2 7.2375 8.2625 9.1375 10.0917 10.6500 11.1042 11.5958 
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Table 4. Exact and Asymptotic Type I error rates for K-W 10.0  and k = 3 
 

     Sample sizes            Exact       Asymptotic |Exact – Asymptotic| 
      2,  2,  2    0.066667    0.157237      0.09057   
   * 3,  3,  3*    0.085714    0.0991511      0.0134371 
      4,  4,  4    0.096623    0.105399      0.008776 
      5,  5,  5    0.099520    0.105399      0.005879 
      6,  6,  6    0.098737    0.103415      0.004678 
      7,  7,  7    0.099327    0.102840      0.003513 
      8,  8,  8    0.099331    0.101266      0.001935 
      9,  9,  9    0.099584    0.101522      0.001938 
     10,  10,  10    0.099717    0.102284      0.002567 
     11,  11,  11    0.099340    0.101194      0.001854 
     12,  12,  12    0.099583    0.101136      0.001553 
     13,  13,  13    0.099826    0.101212      0.001386 
     14,  14,  14    0.099902    0.101268      0.001366 
     15,  15,  15    0.099967    0.101008      0.001041 

* Minimum sample size for the application of the asymptotic result of the K-W 
 
Table 5. Exact and Asymptotic Type I error rates for K-W 05.0  and k = 3 
 

Sample sizes        Exact     Asymptotic |Exact– Asymptotic| 
    3,  3,  3       0.028571      0.0608101       0.0322391 
    4,  4,  4       0.048658      0.0591946       0.0105366 
    5,  5,  5       0.048777      0.0590129       0.0102359 
    6,  6,  6       0.049054      0.0572888       0.0082348 
    7,  7,  7       0.049108      0.0559602       0.0068522 
    8,  8,  8       0.049733      0.0551610       0.005428 
  * 9,  9,  9*       0.049946      0.0543769       0.0043309 
   10,  10,  10       0.049897      0.0535869       0.0036899 
   11,  11,  11       0.049852      0.0537358       0.0038838 
   12,  12,  12       0.049969      0.0531475       0.0031785 
   13,  13,  13       0.049987      0.0530413       0.0030543 
   14,  14,  14       0.049968      0.0524552       0.0024872 
   15,  15,  15       0.049934      0.0521806       0.0022466 

* Minimum sample size for the application of the asymptotic result of the K-W. 
 
Table 6. Exact and Asymptotic Type I error rates for K-W 10.0  and k = 4 
 

   Sample sizes       Exact      Asymptotic |Exact– Asymptotic| 
  2,  2,  2,  2    0.076190     0.138639       0.062449 
  3,  3,  3,  3    0.097792     0.112864       0.015072 
* 4,  4,  4,  4*    0.099001     0.108434       0.009433 
  5,  5,  5,  5    0.099340     0.106406       0.007066 

* Minimum sample size for the application of the asymptotic result of the K-W 
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Fig. 1. Exact and asymptotic cumulative distribution functions of the K-W 
       when 2321  nnn  
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  Fig. 3. Exact and asymptotic cumulative distribution functions of the K-W  
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 Fig. 5. Exact and asymptotic cumulative distribution functions of the K-W  

when 5,3,2 321  nnn     
                                                                                              
CONCLUSION 
 
This paper provides a sure and efficient method for 
obtaining the exact distribution of the K-W statistic and 
the proposed method overcomes the major problem of 
carrying out a complete enumeration in order to construct 
the exact test of significance. The exact critical values for 
the K-W statistic have been produced and the minimum 
sample size required for the application of the asymptotic 
distribution has been presented. 
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